Java实现的深度优先算法(DFS)学习实例,深度优先搜索算法(英语:Depth-First-Search,简称DFS)是一种用于遍历或搜索树或图的算法。沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
当然看到上面这句话的时候,我并没有理解什么到底是DFS,因此又看了很多人的说话,有了下面一段话:
DFS的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节点,然后从另一条路开始走到底。
DFS适合此类题目:给定初始状态跟目标状态,要求判断从初始状态到目标状态是否有解。
深度与广度的比较
我们搜索一个图是按照树的层次来搜索的。
我们假设一个节点衍生出来的相邻节点平均的个数是N个,那么当起点开始搜索的时候,队列有一个节点,当起点拿出来后,把它相邻的节点放进去,那么队列就有N个节点,当下一层的搜索中再加入元素到队列的时候,节点数达到了N2,你可以想想,一旦N是一个比较大的数的时候,这个树的层次又比较深,那这个队列就得需要很大的内存空间了。
于是广度优先搜索的缺点出来了:在树的层次较深&子节点数较多的情况下,消耗内存十分严重。广度优先搜索适用于节点的子节点数量不多,并且树的层次不会太深的情况。
那么深度优先就可以克服这个缺点,因为每次搜的过程,每一层只需维护一个节点。但回过头想想,广度优先能够找到最短路径,那深度优先能否找到呢?深度优先的方法是一条路走到黑,那显然无法知道这条路是不是最短的,所以你还得继续走别的路去判断是否是最短路?
于是深度优先搜索的缺点也出来了:难以寻找最优解,仅仅只能寻找有解。其优点就是内存消耗小,克服了刚刚说的广度优先搜索的缺点。
数字为搜索顺序
代码(转)
public class DFSTest {
// 存储节点信息
private char[] vertices;
// 存储边信息(邻接矩阵)
private int[][] arcs;
// 图的节点数
private int vexnum;
// 记录节点是否已被遍历
private boolean[] visited;
// 初始化
public DFSTest(int n) {
vexnum = n;
vertices = new char[n];
arcs = new int[n][n];
visited = new boolean[n];
for (int i = 0; i < vexnum; i++) {
for (int j = 0; j < vexnum; j++) {
arcs[i][j] = 0;
}
}
}
// 添加边(无向图)
public void addEdge(int i, int j) {
// 边的头尾不能为同一节点
if (i == j)return;
arcs[i][j] = 1;
arcs[j][i] = 1;
}
// 设置节点集
public void setVertices(char[] vertices) {
this.vertices = vertices;
}
// 设置节点访问标记
public void setVisited(boolean[] visited) {
this.visited = visited;
}
// 打印遍历节点
public void visit(int i){
System.out.print(vertices[i] + " ");
}
// 从第i个节点开始深度优先遍历
private void traverse(int i){
// 标记第i个节点已遍历
visited[i] = true;
// 打印当前遍历的节点
visit(i);
// 遍历邻接矩阵中第i个节点的直接联通关系
for(int j=0;j<vexnum;j++){
// 目标节点与当前节点直接联通,并且该节点还没有被访问,递归
if(arcs[i][j]==1 && visited[j]==false){
traverse(j);
}
}
}
// 图的深度优先遍历(递归)
public void DFSTraverse(){
// 初始化节点遍历标记
for (int i = 0; i < vexnum; i++) {
visited[i] = false;
}
// 从没有被遍历的节点开始深度遍历
for(int i=0;i<vexnum;i++){
if(visited[i]==false){
// 若是连通图,只会执行一次
traverse(i);
}
}
}
// 图的深度优先遍历(非递归)
public void DFSTraverse2(){
// 初始化节点遍历标记
for (int i = 0; i < vexnum; i++) {
visited[i] = false;
}
Stack<Integer> s = new Stack<Integer>();
for(int i=0;i<vexnum;i++){
if(!visited[i]){
//连通子图起始节点
s.add(i);
do{
// 出栈
int curr = s.pop();
// 如果该节点还没有被遍历,则遍历该节点并将子节点入栈
if(visited[curr]==false){
// 遍历并打印
visit(curr);
visited[curr] = true;
// 没遍历的子节点入栈
for(int j=vexnum-1; j>=0 ; j-- ){
if(arcs[curr][j]==1 && visited[j]==false){
s.add(j);
}
}
}
}while(!s.isEmpty());
}
}
}
public static void main(String[] args) {
DFSTest g = new DFSTest(9);
char[] vertices = {'A','B','C','D','E','F','G','H','I'};
g.setVertices(vertices);
g.addEdge(0, 1);
g.addEdge(0, 5);
g.addEdge(1, 0);
g.addEdge(1, 2);
g.addEdge(1, 6);
g.addEdge(1, 8);
g.addEdge(2, 1);
g.addEdge(2, 3);
g.addEdge(2, 8);
g.addEdge(3, 2);
g.addEdge(3, 4);
g.addEdge(3, 6);
g.addEdge(3, 7);
g.addEdge(3, 8);
g.addEdge(4, 3);
g.addEdge(4, 5);
g.addEdge(4, 7);
g.addEdge(5, 0);
g.addEdge(5, 4);
g.addEdge(5, 6);
g.addEdge(6, 1);
g.addEdge(6, 3);
g.addEdge(6, 5);
g.addEdge(6, 7);
g.addEdge(7, 3);
g.addEdge(7, 4);
g.addEdge(7, 6);
g.addEdge(8, 1);
g.addEdge(8, 2);
g.addEdge(8, 3);
System.out.print("深度优先遍历(递归):");
g.DFSTraverse();
System.out.println();
System.out.print("深度优先遍历(非递归):");
g.DFSTraverse2();
}
}
----------
Output:
深度优先遍历(递归):A B C D E F G H I
深度优先遍历(非递归):A B C D E F G H I
博客中有些内容引自:
深度优先搜索(DFS)理解DFS概念上很清晰